Comparison of different fluorescence fluctuation methods for their use in FRET assays: monitoring a protease reaction.

نویسندگان

  • C Eggeling
  • S Jäger
  • D Winkler
  • Peet Kask
چکیده

We compare the accuracy of a variety of Fluorescence Fluctuation Spectroscopy (FFS) methods for the study of Förster Resonance Energy Transfer (FRET) assays. As an example, the cleavage of a doubly labeled, FRET-active peptide substrate by the protease Trypsin is monitored and analyzed using methods based on fluorescence intensity, Fluorescence Correlation Spectroscopy (FCS) and Fluorescence Intensity Distribution Analysis (FIDA). The presented fluorescence data are compared to High-Pressure Liquid Chromatography (HPLC) data obtained from the same assay. The HPLC analysis discloses general disadvantages of the FRET approach, such as incomplete labeling and the need for aliquots. However, the simultaneous use of two photon detectors monitoring the fluorescence signal of both labels significantly improves the analysis. In particular, the two global analysis tools Two-Dimensional Fluorescence Intensity Distribution Analysis (2D-FIDA) and Two-Color Global Fluorescence Correlation Spectroscopy (2CG-FCS) highlight the potential of a combination of FFS and FRET. While conventional FIDA and FCS auto- or cross-correlation analysis leaves the user with drawbacks inherent in two-color and FRET applications, these effects are overcome by the global analysis on the molecular level. Furthermore, it is advantageous to analyze the unnormalized as opposed to the normalized correlation data when combining any fluorescence correlation method with FRET, since the analysis of the unnormalized data introduces more accuracy and is less sensitive to the experimental drawbacks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly Sensitive FRET-Based Fluorescence Immunoassay for Detecting of Aflatoxin B1 Using Magnetic/Silica Core-Shell as a Signal Intensifier

Background: Recently, some new nanobiosensors using different nanoparticles or microarray systems for detection of mycotoxins have been designed . However, rapid, sensitive and early detection of aflatoxicosis would be very helpful to distinguish high-risk persons. Objectives: We report a highly sensitive competitive immunoassay using magnetic/silica core shell as a signal intensifier for the d...

متن کامل

Rapid analysis of Forster resonance energy transfer by two-color global fluorescence correlation spectroscopy: trypsin proteinase reaction.

In this study we introduce the combination of two-color global fluorescence correlation spectroscopy (2CG-FCS) and Förster resonance energy transfer (FRET) as a very powerful combination for monitoring biochemical reactions on the basis of single molecule events. 2CG-FCS, which is a new variation emerging from the family of fluorescence correlation spectroscopy, globally analyzes the simultaneo...

متن کامل

Real-time monitoring of human enterovirus (HEV)-infected cells and anti-HEV 3C protease potency by fluorescence resonance energy transfer.

A real-time assay system that allows monitoring of intracellular human enterovirus (HEV) protease activity was established using the principle of fluorescence resonance energy transfer (FRET). It was accomplished by engineering cells to constitutively express a genetically encoded FRET probe. The FRET-based probe was designed to contain an enterovirus 71 3C protease (3C(pro)) cleavage motif fla...

متن کامل

A protease assay for two-photon crosscorrelation and FRET analysis based solely on fluorescent proteins.

GFP and the red fluorescent protein, DsRed, have been combined to design a protease assay that allows not only for fluorescence resonance energy transfer (FRET) studies but also for dual-color crosscorrelation analysis, a single-molecule-based method that selectively probes the concomitant movement of two distinct tags. The measurement principle is based on a spectrally resolved detection of si...

متن کامل

Creation of a recombinant peptide substrate for fluorescence resonance energy transfer-based protease assays.

The performance of protease assays has been revolutionized by the advent of Xuorescence resonance energy transfer (FRET)-based assays. Generation of pure, reliable, high-quality substrate is essential to such assays. Small FRET substrates can be easily prepared by chemical production. The preparation of Xuorogenic substrate becomes cumbersome when a larger peptide substrate is required or when ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current pharmaceutical biotechnology

دوره 6 5  شماره 

صفحات  -

تاریخ انتشار 2005